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Abstract−The exotic dynamical behaviors exhibited in chemical reaction systems, such as multiple steady states,

undamped oscillations, chaos, and so on, often result from unstable steady states. A bacterial glycolysis model is studied,

which involves the generation of adenosine triphosphate (ATP) in a flow system and consists of eight species and ten

reactions. A minimum subnetwork of the bacterial glycolysis model is determined to exhibit an unstable steady state

with a positive real eigenvalue, which gives rise to undamped oscillations for a small perturbation. A set of rate con-

stants and the corresponding unstable steady state are computed by using a positive real eigenvalue condition. The phe-

nomena of oscillations and bifurcation are discussed. These results are extended to the bacterial glycolysis model and

several parent networks.
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INTRODUCTION

Some exotic dynamic phenomena in chemical reactors, such as

unstable steady states, undamped oscillations and multiple steady

states, have been shown to occur under both non-isothermal and

isothermal conditions [Chang et al., 1989; Kim and Rhee, 1989;

Chuang et al., 2004]. There are a growing number of experimental

systems in which abnormal behavior is exhibited in isothermal reac-

tors [Geiseler and Bar-Eli, 1981; Orbán and Epstein, 1985; Hung

et al., 1995; Dutt and Müller, 1996]. This is to say that instabilities

derive not from thermal effects but rather from the intricacy of chem-

istry itself. The identification of such reaction mechanisms is im-

portant, since it not only helps experimentalists to determine reac-

tion mechanisms but also helps engineers to design more efficient

reaction processes.

Some results of the chemical reaction network theory have been

based upon classification of reaction networks by means of a non-

negative integer index called the deficiency. The work of Horn [1972],

Horn and Jackson [1972], and Feinberg [1972] led to the deficiency

zero theorem: for any deficiency zero network, no matter what the

positive rate constants are, there is at most one positive steady state,

that steady state is stable and there does not exist any cyclic solu-

tion. However, the stable property of deficiency zero networks is

not shared in a general way by networks of higher deficiency. The

deficiency one theorem [Feinberg, 1987] and the deficiency one

algorithm [Feinberg, 1988] provide means to distinguish between

those (deficiency one) mechanisms which can exhibit multiple steady

states and those which cannot. Besides these deficiency-oriented

theories, the subnetwork analysis [Li, 1998; Chuang et al., 2004]

and the SCL graph method [Schlosser and Feinberg, 1994] can also

be applied to determine the possibility of multiple steady states. The

stoichiometric network analysis developed by Clarke [1980] is a use-

ful tool to study the stability of complex reaction networks. Based

on stoichiometric network analysis, conditions for the occurrence

of a Hopf bifurcation in reaction networks are proposed in papers

[Eiswirth et al., 1991, 1996].

Biological cell systems, which usually consist of many species

and reactions, can also give rise to those complex reaction behaviors

[Hatzimanikatis and Bailey, 1997; Li, 1998; Chuang et al., 2004;

Ho et al., 2005]. A rudimentary description of glycolysis, a process

by which a carbon source is digested by a cell, is formulated based

upon pathways pertinent to bacteria by Hatzimanikatis and Bailey

[1997]. Under certain assumptions, the steady states of the glyco-

lytic system are simplified and described by three coupled non-linear

equations. They showed that the system admitted multiple steady

states for some kinetic parameters. In this work, the complex gly-

colytic system with eight species and ten reactions is determined to

admit unstable steady states with positive real eigenvalues, which

approach undamped oscillations for a small perturbation. A posi-

tive real eigenvalue condition in the appendix is applied, which gives

a necessary and sufficient condition for the determination of an un-

stable steady state having a positive real eigenvalue in general isother-

mal reaction networks. The undamped oscillations in a subnetwork

and several extended networks are also determined and discussed.

THEORY

The example of bacterial glycolysis model, simplified by Hatzi-

manikatis and Bailey [1997], arises from participation of ATP and

adenosine diphosphate (ADP) and from the involvement of phos-

phoenolpyruvate (PEP) in the glycolysis pathway. The overall reac-

tion is Glucose+2ADP→2Pyruvate+2ATP, which contains the fol-

lowing elementary steps:

S+E→G+P

S+T→G+D

G+T→F+D

F+2D→←2E+2T (1)

E+D→P+T

M+T→←2D

D→←T
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(The symbols S and P correspond to extracellular glucose and to

pyruvate; G corresponds to the pool of glucose 6-phosphate and

fructose 6-phosphate; F corresponds to fructose 1,6-diphosphate; E

corresponds to phosphoenolpyruvate; M corresponds to adenosine

mono-phosphate (AMP), D to ADP, and T to ATP, respectively.)

The assumptions used in this work are: 1) the reactants, glucose

and AMP, and the product, pyruvate, continue to diffuse or flow in

and out of a cell, while the other species are all constrained inside a

cell; 2) enzyme activities depend only on the concentrations of their

substrates and the cell is not growing; 3) the reaction system is well

mixed and mass action kinetics is followed. Thus, the glycolysis in

a reaction region inside of a cell including material transportation

terms is represented by a reaction network (2) and its correspond-

ing dynamical ordinary differential equations are listed in Eq. (3).

A1
→
←0→←A8

A4→0

A1+A2→A3+A4

A1+A5→A3+A7

A3+A5→A6+A7 (2)

A6+2A7
→
←2A2+2A5

A2+A7→A4+A5

A8+A5
→
←2A7

A7
→
←A5

(A1: S, A2: E, A3: G, A4: P, A5: T, A6: F, A7: D, A8: M, and 0: zero

complex) 

(3)

where ci, i=1, 2, …, 8 denote the concentrations of species A1, A2,

…, A8 within the reaction region of a cell and ki→j is a rate constant

for reaction i→j in network (2).

The last seven lines in Eq. (2) are the elementary steps in mech-

anism Eq. (1). The first two lines in Eq. (2) display the inflow of

reactants and the outflow of remaining reactants and the products.

In reaction network terms [Glansdorff and Prigogine, 1971], to ac-

count for the inflow of A1 and A8 in the feed stream, the pseudo-

reactions 0→A1 and 0→A8 are added to true chemistry Eq. (1).

(The physical meaning of “0” (zero complex) represents the sur-

roundings.) Compared with the dynamical equations in Eq. (3), the

rate constants k0→A1
 and k0→A8

 are assigned, respectively, to be equal

to c1
f/θ and c8

f/θ (The symbol ci
f denotes the feed concentration of

species i(=1, 8) and θ denotes the residence time.). Also to account

for the outflow of A1, A8 and A4 in the effluent stream, pseudo-reac-

tions A1→0, A8→0 and A4→0 are added to true chemistry Eq.

(1). The flow rates kA1→0, kA8→0 and kA4→0 are all assigned to be equal

to the reciprocal of residence time 1/θ. Thus, in reaction network

terms, we consider the reactions given in Eq. (1) operating in an open

system to be modeled by reaction network (2), instead of Eq. (1).

The complex reaction network (2) has deficiency two. Accord-

ing to the deficiency-oriented theories, a network must have a de-

ficiency of at least one to give rise to multiple steady states or an

unstable steady state. Thus, we are interested to know whether there

exists a deficiency one “minimum” subnetwork of the deficiency

two network (2) consisting of the same eight species as the net-

work (2), which admits multiple steady states or an unstable state.

All such deficiency one subnetworks were analyzed by the defi-

ciency one algorithm and none admits steady state multiplicity. A

subnetwork is determined to exhibit an unstable steady state with a

positive real eigenvalue by using a positive real eigenvalue condi-

tion. It is obtained by deleting the reaction A1+A5→A3+A7 from

network (2) and displayed below.

A1
→
←0→←A8

A4→0

A1+A2→A3+A4

A3+A5→A6+A7 (4)

A6+2A7
→
←2A2+2A5

A2+A7→A4+A5

A8+A5
→
←2A7

A7
→
←A5

The network (4) is used to introduce some terminology used in

the positive real eigenvalue condition (formal definitions can be found

in Feinberg [1987, 1988]). We will use the symbol N to denote the

number of species in a network under consideration. Thus, for net-

work (4) N=8. By  we shall mean the usual vector space of N-

tuples of real numbers. The standard basis for  will be denoted

{A1, A2, ..., AN}.

The complexes of a network are the objects that appear before

and after reaction arrows. Thus the set of complexes for network

(4) is {0, A1, A8, A4, A1+A2, A3+A4, A3+A5, A6+A7, A6+2A7, 2A2+

2A5, A2+A7, A4+A5, A8+A5, 2A7, A7, A5}. Given a network with

N species, we shall associate with each complex a vector in .

Consider network (4), with complex 0 (zero) we associate the com-

plex vector 0 in ; with complex A6+2A7 we associate the com-

plex vector A6+2A7; and so on.

We shall write yi→yj (or the abbreviation i→j) to indicate the

reaction whereby the complex yi reacts to complex yj. We denote

the set of reactions in a network by the symbol R. Thus the set of

reactions in network (4) is R={0→A1, A1→0, 0→A8, A8→0, A4

→0, A1+A2→A3+A4, A3+A5→A6+A7, A6+2A7→2A2+2A5, 2A2+

2A5→A6+2A7, A2+A7→A4+A5, A8+A5→2A7, 2A7→A8+A5, A7→

A5, A5→A7}. We reserve the symbol r for the number of distinct

reactions in a network. For network (4), r=14. A reaction yi→yj is

said to be reversible if its reverse reaction yj→yi is also in the net-

dc1

dt
------- = k0 A1→ − kA1 0→ c1− kA1+A2 A3+A4→ c1c2 − kA1+A5 A3+A7→ c1c5

dc2

dt
------- = − kA1+A2 A3+A4→ c1c2 + 2kA6+2A7 2A2+2A5→ c6c7

2

 − 2k2A2+2A5 A6+2A7→ c2

2

c5

2

− kA2+A7 A4+A5→ c2c7

dc3

dt
------- = kA1+A2 A3+A4→ c1c2− kA3+A5 A6+A7→ c3c5 + kA1+A5 A3+A7→ c1c5

dc4

dt
------- = − kA4 0→ c4 + kA1+A2 A3+A4→ c1c2 + kA2+A7 A4+A5→ c2c7

dc5

dt
------- = − kA3+A5 A6+A7→ c3c5 + 2kA6+2A7 2A2+2A5→ c6c7

2

 − 2k2A2+2A5 A6+2A7→ c2

2

c5

2

+ kA2+A7 A4+A5→ c2c7 − kA8+A5 2A7→ c8c5 + k2A7 A8+A5→ c7

2

+ kA7 A5→ c7 − kA5 A7→ c5 − kA1+A5 A3+A7→ c1c5

dc6

dt
------- = kA3+A5 A6+A7→ c3c5 − kA6+2A7 2A2+2A5→ c6c7

2

 + k2A2+2A5 A6+2A7→ c2

2

c5

2

dc7

dt
------- = kA3+A5 A6+A7→ c3c5 − 2kA6+2A7 2A2+2A5→ c6c7

2

 + 2k2A2+2A5 A6+2A7→ c2

2

c5

2

− kA2+A7 A4+A5→ c2c7 + 2kA8+A5 2A7→ c8c5 − 2k2A7 A8+A5→ c7

2

− kA7 A5→ c7 + kA5 A7→ c5 + kA1+A5 A3+A7→ c1c5

dc8

dt
------- = k0 A8→  − kA8 0→ c8 − kA8+A5 2A7→ c8c5 + k2A7 A8+A5→ c7

2

ℜ
N

ℜ
N

ℜ
N

ℜ
8
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work; otherwise, the reaction yi→yj is irreversible. We shall call

reversible reactions yi
→
←yj a reversible reaction pair. The symbol p

indicates the number of distinct reversible reaction pairs in a net-

work. The number of irreversible reactions in a network is r−2p.

For network (4), there are five (p=5) reversible reaction pairs and

four (r−2p=14−10) irreversible reactions.

With each reaction of the network we associate a reaction vector

in  obtained by subtracting the “reactant” complex vector yi from

the “product” complex vector yj, i.e., yj−yi. Consider network (4) for

reaction 0→A1; the corresponding reaction vector in  is A1−0

(=A1). The set of reaction vectors for network (4) is {±A1, ±A8, −A4,

A3+A4−A1−A2, A6+A7−A3−A5, ±(2A2+2A5−A6−2A7), A4+A5−

A2−A7, ±(2A7−A8−A5), ±(A5−A7)}.

We shall say that a reaction network has rank s if there exists a

linearly independent set of s reaction vectors for the network and

there exists no linearly independent set of s+1 reaction vectors. The

set of eight reaction vectors {−A1, −A8, A3+A4−A1−A2, A6+A7−

A3−A5, 2A2+2A5−A6−2A7, A4+A5−A2−A7, 2A7−A8−A5, A5−A7}

for network (4) is linearly independent, but any set of nine reaction

vectors for network (4) is linearly dependent. Thus, the rank of net-

work (4) is eight, and for it we write s=8.

The stoichiometric subspace for a network is the span of its reac-

tion vectors. We shall reserve the symbol St to designate the stoi-

chiometric subspace for a network. It is clear that a stoichiometric

subspace is a linear subspace of . The dimension of a stoichio-

metric subspace is equal to the rank s of its network. The stoichio-

metric subspace for network (4) is the span generated by the reac-

tion vectors {−A1, −A8, A3+A4−A1−A2, A6+A7−A3−A5, 2A2+2A5−

A6−2A7, A4+A5−A2−A7, 2A7−A8−A5, A5−A7} which is .

We shall say that a vector φ∈  is sign compatible with (or the

abbreviation s.c.w.) a vector σ∈  if sign σL=sign φL, L=1, 2, ...,

N. This means that σL is positive if φL is positive, σL is negative if

φL is negative, and σL is zero if φL is zero.

Suppose a network under consideration has r distinct reactions

with p reversible reaction pairs and r−2p irreversible reactions. A

spanning subnetwork of the network under consideration is a net-

work consisting of all the r−2p irreversible reactions and one and

only one reaction of each p reversible reaction pairs. There are r−p

(=(r−2p)+p) reactions in a spanning subnetwork. We shall reserve

the symbol F to denote the set of reactions in a spanning subnet-

work. The network shown in (5) is a spanning subnetwork of net-

work (4), since it consists of the four irreversible reactions and one

reaction of the reversible reaction pair in network (4). For it we write

F={A1→0, A8→0, A4→0, A1+A2→A3+A4, A3+A5→A6+A7,

A6+2A7→2A2+2A5, A2+A7→A4+A5, A8+A5→2A7, A7→A5}.

A1→0←A8

A4→0

A1+A2→A3+A4

A3+A5→A6+A7 (5)

A6+2A7→2A2+2A5

A2+A7→A4+A5

A8+A5→2A7

A7→A5

A network having one or more than one reversible reaction pairs

(p≥1) will contain more than one spanning subnetwork. In what

follows it will be understood that we have chosen to work with a

fixed (but arbitrary) spanning subnetwork in each case under study.

For a chosen spanning subnetwork, we shall construct a set of cor-

responding spanning-subnetwork vectors {d
(1)

, d
(2)

, …, d
(r−p−s)

} in a

vector space . Let {ωi→j: i→j∈R} be the standard basis for .

These spanning-subnetwork vectors are the r−p−s linearly inde-

pendent (nonzero) solutions to the vector equation

L=1, 2, …, r−p−s (6)

(A solution is a family of numbers {d
(L)

i→j: i→j∈F}.). Then, d
(L)

, L=

1, 2, …, r−p−s are vectors defined in the following way:

(7)

Consider network (4). For an arbitrary spanning subnetwork, there

is one (r−p−s=14−5−8=1) spanning-subnetwork vector d
(1)

 in .

Let network (5) be the chosen spanning subnetwork. By Eq. (6),

we have

A set of nonzero linearly independent solutions to the above equa-

tion is:

(8)

Let c=[c1, c2, …, cN] be a composition vector in  (non-negative

orthant of ) for species AL, L=1, 2, ..., N. In general, the set of

isothermal mass action differential equations describing the behav-

ior of a reaction network can be written:

(9)

where yi and yj denote, respectively, the reactant and product com-

plex, yiL denoting the stoichiometric coefficient of species AL in re-

actant complex yi, and ki→j denoting the rate constant for reaction

i→j. The mass action differential equations for network (4) are

(10)

ℜ
N

ℜ
8

ℜ
N

ℜ
8

ℜ
N

ℜ
N

ℜ
R

ℜ
R

di j→

L( )
yj − yi( ) = 0,

i j F∈→

∑

d
L( )

 = di j→

L( )
ω i j→

i j F∈→

∑

ℜ
R

dA1 0→

1( )
0 − A1( ) + dA8 0→

1( )
0 − A8( ) + dA4 0→

1( ) 0 − A4( )
+ dA1+A2 A3+A4→

1( )
A3 + A4 − A1− A2( )

+ dA3+A5 A6+A7→

1( )
A6 + A7 − A3 − A5( )

+ dA6+2A7 2A2+2A5→

1( )
2A2 + 2A5 − A6 − 2A7( )

+ dA2+A7 A4+A5→

1( )
A4 + A5 − A2 − A7( )

+ dA8+A5 2A7→

1( )
2A7 − A8 − A5( ) + dA7 A5→

1( )
A5 − A7( ) = 0

dA1 0→

1( )
 = −1, dA8 0→

1( )
 = 0, dA4 0→

1( )
 = 2, dA1+A2 A3+A4→

1( )
 =1, dA3+A5 A6+A7→

1( )
 =1,

dA6+2A7 2A2+2A5→

1( )
 =1, dA2+A7 A4+A5→

1( )
 =1, dA8+A5 2A7→

1( )
 = 0, dA7 A5→

1( )
 = − 2

P
N

ℜ
N

dc

dt
----- = f c( ) = f1 c( ), …, fN c( )( ) = ki j→ cL

y
iL

L=1

N

∏⎝ ⎠
⎛ ⎞ yj − yi( )

i j R∈→

∑

dc1

dt
------- = k0 A1→ − kA1 0→ c1− kA1+A2 A3+A4→ c1c2

dc2

dt
------- = − kA1+A2 A3+A4→ c1c2 + 2kA6+2A7 2A2+2A5→ c6c7

2

 − 2k2A2+2A5 A6+2A7→ c2

2

c5

2

− kA2+A7 A4+A5→ c2c7

dc3

dt
------- = kA1+A2 A3+A4→ c1c2− kA3+A5 A6+A7→ c3c5

dc4

dt
------- = − kA4 0→ c4 + kA1+A2 A3+A4→ c1c2 + kA2+A7 A4+A5→ c2c7

dc5

dt
------- = − kA3+A5 A6+A7→ c3c5 + 2kA6+2A7 2A2+2A5→ c6c7

2

 − 2k2A2+2A5 A6+2A7→ c2

2

c5

2

+ kA2+A7 A4+A5→ c2c7 − kA8+A5 2A7→ c8c5 + k2A7 A8+A5→ c7

2

+ kA7 A5→ c7 − kA5 A7→ c5

dc6

dt
------- = kA3+A5 A6+A7→ c3c5 − kA6+2A7 2A2+2A5→ c6c7

2

 + k2A2+2A5 A6+2A7→ c2

2

c5

2
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By a steady state of a reaction system we shall mean a composi-

tion c* satisfying 0=f(c*). By a positive steady state we shall mean

a steady state at which all species concentrations are positive. Only

positive steady states are considered in this article.

For each composition  the right side of differential Eq. (10)

is a linear combination of all reaction vectors in its network. This is

to say that dc/dt always lies in the stoichiometric subspace St of the

network under consideration. Suppose γ=c−c* is a vector of com-

position change around a positive steady state c*. Then it leads to

. Any vector  of a given network can be represented by

reaction vectors in the reaction set F for an arbitrary chosen span-

ning subnetwork:

(11)

RESULTS AND DISCUSSION

A positive real eigenvalue condition provides a necessary and

sufficient condition for the determination of an unstable steady state

having a positive real eigenvalue with its eigenvector lying in the

stoichiometric subspace for the reaction network under study. For a

given reaction network, we choose an arbitrary spanning subnet-

work and construct its spanning-subnetwork vectors. Following the

condition, a system of equations and inequalities is constructed. We

then solve the system. If a set of qualified solutions exists, there is

a set of positive rate constants such that the corresponding isother-

mal mass action differential equations for the given network admit

an unstable steady state with a positive real eigenvalue. Otherwise,

no matter what positive rate constants the system might have, the

differential equations cannot exhibit any positive-real-eigenvalue posi-

tive steady state.

Consider network (4). By the spanning-subnetwork vector in Eq.

(5) and the positive real eigenvalue condition, a set of inequalities

and equations is constructed in Eq. (12):

For reversible reaction A1
→
←0 with A1→0∈F,

[ξ1µ1+α1](−1)−γA1→0 and [ξ1·0+α1](−1)−γA1→0 are s.c.w. −µ1 (12a)

For reversible reaction A8
→
←0 with A8→0∈F,

[ξ1µ8+α1]·0−γA8→0 and [ξ1·0+α1]·0−γA8→0 are s.c.w. −µ8 (12b)

For reversible reaction A6+2A7
→
←2A2+2A5 with A6+2A7→2A2+2A5

∈F,

[ξ1(µ6+2µ7)+α1]−γA6+2A7→2A2+2A5
 and [ξ1(2µ2+2µ5)+α1]−γA6+2A7→2A2+2A5

are s.c.w. 2µ2+2µ5−µ6−2µ7 (12c)

For reversible reaction A8+A5
→
←2A7 with A8+A5→2A7∈F,

[ξ1(µ8+µ5)+α1]·0−γA8+A5→2A7
 and [ξ1(2µ7)+α1]·0−γA8+A5→2A7

are s.c.w. 2µ7−µ8−µ5 (12d)

For reversible reaction A7
→
←A5 with A7→A5∈F,

[ξ1µ7+α1](−2)−γA7→A5
 and [ξ1µ5+α1](−2)−γA7→A5

 are s.c.w. µ5−µ7 (12e)

For irreversible reaction A4→0,

ξ1>0 (12f)

[ξ1(µ4)+α1]−γA4→0=0 (12g)

For irreversible reaction A1+A2→A3+A4,

ξ1>0 (12h)

[ξ1(µ1+µ2)+α1]−γA1+A2→A3+A4
=0 (12i)

For irreversible reaction A3+A5→A6+A7,

ξ1>0 (12j)

[ξ1(µ3+µ5)+α1]−γA3+A5→A6+A7
=0 (12k)

For irreversible reaction A2+A7→A4+A5,

ξ1>0 (12l)

[ξ1(µ2+µ7)+α1]−γA2+A7→A4+A5
=0 (12m)

From Eq. (11), the eigenvector γ∈St is represented by

γ=[A1](−γA1→0−γA1+A2→A3+A4
)

γ=+[A2](−γA1+A2→A3+A4
+2γA6+2A7→2A2+2A5

−γA2+A7→A4+A5
)

γ=+[A3](γA1+A2→A3+A4
−γA3+A5→A6+A7

)

γ=+[A4](−γA4→0+γA1+A2→A3+A4
+γA2+A7→A4+A5

) (13a)

γ=+[A5](−γA3+A5→A6+A7
+2γA6+2A7→2A2+2A5

+γA2+A7→A4+A5
−γA8+A5→2A7

+γA7→A5
)

γ=+[A6](γA3+A5→A6+A7
−γA6+2A7→2A2+2A5

)

γ=+[A7](γA3+A5→A6+A7
−2γA6+2A7→2A2+2A5

−γA2+A7→A4+A5
+2γA8+A5→2A7

−γA7→A5
)

γ=+[A8](−γA8→0−γA8+A5→2A7
)

It is required that µ is sign compatible with γ. This implies that 

µ1 is s.c.w. −γA1→0−γA1+A2→A3+A4

µ2 is s.c.w. −γA1+A2→A3+A4
+2γA6+2A7→2A2+2A5

−γA2+A7→A4+A5

µ3 is s.c.w. γA1+A2→A3+A4
−γA3+A5→A6+A7

µ4 is s.c.w. −γA4→0+γA1+A2→A3+A4
+γA2+A7→A4+A5

(13b)

µ5 is s.c.w. −γA3+A5→A6+A7
+2γA6+2A7→2A2+2A5

+γA2+A7→A4+A5
−γA8+A5→2A7

+γA7→A5

µ6 is s.c.w. γA3+A5→A6+A7
−γA6+2A7→2A4+2A5

µ7 is s.c.w. γA3+A5→A6+A7
−2γA6+2A7→2A2+2A5

−γA2+A7→A4+A5
+2γA8+A5→2A7

−γA7→A5

µ8 is s.c.w. −γA8→0−γA8+A5→2A7

The inequalities and Eq.s (12) and (13b) are solved to determine

an unstable steady state with a real positive eigenvalue. According

to Eqs. (12) and (13b), we assume the sign patterns of −µ1, −µ8, 2µ2+

2µ5−µ6−2µ7, 2µ7−µ8−µ5, µ5−µ7, µ1, …, µ8. Eqs. (12) and (13b) with

the assumed sign patterns form a linear system of inequalities and

equations. Indeed, it is always linear for any reaction network with

r−p−s=1. Mathematically, a linear system of inequalities and equa-

tions can be solved by the Simplex method, even if consisting of

many unknowns. A computer program was developed to solve this

example, for which the number of sign patterns considered is 313
−1.

Among them only four different sets of solutions are found. A set

of solutions displayed in Eq. (14) is used to do the following anal-

ysis without any particular reason. According to the formula in the

Appendix, Eq. (14) is used to construct a set of rate constants in

Eq. (15), an unstable steady state c* in Eq. (16) having a positive

real eigenvalue (λ=1) with its eigenvector γ∈St. Note the equality

of the flow rate kA1→0, kA8→0 and kA4→0 in Eq. (15), which is consis-

tent with a CFSTR picture.

µ1=−12.99999, µ2=14.99999, µ3=−1, µ4=10.99999,

µ5=13.99999, µ6=44.99998, µ7=5.999995, µ8=−1,

ξ1=1, α1=−14.49999, (14)

γA1→0=12.58695, γA8→0=−1.913043, γA4→0=−6.999995,

γA1+A2→A3+A4
=−12.49999, γA3+A5→A6+A7

=−1.5,

γA6+2A7→2A2+2A5
=−2.499999, γA2+A7→A4+A5

=6.499996, γA8+A5→2A7
=2, γA7→A5

=0

dc7

dt
------- = kA3+A5 A6+A7→ c3c5 − kA6+2A7 2A2+2A5→ c6c7

2

 + k2A2+2A5 A6+2A7→ c2

2

c5

2

− kA2+A7 A4+A5→ c2c7 + 2kA8+A5 2A7→ c8c5 − 2k2A7 A8+A5→ c7

2

− kA7 A5→ c7 + kA5 A7→ c5

dc8

dt
------- = k0 A8→  − kA8 0→ c8 − kA8+A5 2A7→ c8c5 + k2A7 A8+A5→ c7

2

c P
N

∈

γ St∈ γ St∈

γ = γ1, γ2, …, γN[ ] = γi j→ yj − yi( )
i j F∈→

∑

A1              0              A8

21.999958

1.1471573

1.9130433

21.999958

A4              0
21.999958
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(15)

c1
*=0.00668898, c2

*=0.06666644, c3
*=10.999999, c4

*=0.09090926,

c5
*=0.07142848, c6

*=0.02222221, c7
*=0.16666714, c8

*=0.08695668. (16)

The reaction network (15) has deficiency one. The deficiency

one algorithm [Feinberg, 1972] is used to show that it cannot admit

multiple steady states no matter what rate constants it might have.

It is interesting to know where this unstable steady state c* in Eq.

(16) goes for a small perturbation without approaching any other

steady state. Fig. 1 shows the concentration (c1, c3 and c7)-time (t)

plot with the rate constants in Eq. (15). A sustained oscillation is

obtained and it has a period about 2,200 sec. For network (15), five

different initial conditions (I.C. 1, 2, …, 5 or points K, L, …, O)

are numerically simulated and the phase portrait (c3 vs. c7) is shown

in Fig. 2. The I.C. 1 is the unstable steady state c* in Eq. (16). All

the five initial conditions approach an anticlockwise stable limiting

cycle (R→S→T→R→…), which is marked by the bold curve

in Fig. 2.

Network (15) is a deficiency one subnetwork of network (2). Can

the sustained oscillations of subnetwork (15) be extended to its parent

network (2)? In the study of steady state multiplicity in complex

reaction networks, a parent network often (but not always) also ad-

mits multiple steady states if one of its deficiency one subnetworks

consisting of the same number of species exhibits steady state multi-

plicity. To extend the multiplicity from a subnetwork to a parent

network, sometimes the parameters in the system of inequalities

and equations remain the same without even a change; sometimes

only a little change is required. For the cases of parameters without

a change, the subnetwork analysis [Li, 1998] provides some suffi-

cient conditions for the capacity of multiple steady states in a net-

work of deficiency greater than one if one of its subnetworks admits

steady state multiplicity. One example [Chuang et al., 2004] is shown

for the case that a little bit of change for the parameters is required.

With a similar concept, we think the parameters in Eq. (14) for the

subnetwork (15) can be used to study sustained oscillations for its

parent network (2).

Consider the network (2) of deficiency two, r−p−s=15−5−8=2;

we have two spanning-subnetwork vectors d
(1)

, d
(2)

 and the system

of inequalities and equations constructed by the positive real eigen-

value condition becomes nonlinear, for which the Simplex method

cannot be applied. Based on the vector µ and γ in Eq. (14), we ad-

just some of these parameters to satisfy the positive real eigenvalue

condition for the network (2). The modified vectors µ and γ are shown

in Eq. (17), which are used to construct a set of rate constants in

Eq. (18), an unstable steady state c* in Eq. (19) having a positive

real eigenvalue (λ=1) with its eigenvector γ∈St. Comparing Eq. (14)

with Eq. (17), the vector µ remains unchanged and only the values

of γA1→0, γA8→0, γA1+A2→A3+A4
 and γA2+A7→A4+A5

 are tuned slightly. It im-

plies that the solution Eq. (14) for the linear system of inequalities

and equations derived from the positive real eigenvalue condition

of the deficiency one subnetwork (15) can be extended to be a set

of solution for that of the deficiency two parent network (18) with

only a slight modification.

µ1=−12.99999, µ2=14.99999, µ3=−1, µ4=10.99999,

µ5=13.99999, µ6=44.99998, µ7=5.999995, µ8=−1,

ξ1=1, α1=−14.49999, ξ2=0.02, α2=0, (17)

γA1→0=12.54208, γA8→0=−1.928978, γA4→0=−6.999995,

γA1+A2→A3+A4
=−12.47999, γA3+A5→A6+A7

=−1.5, γA6+2A7→2A2+2A5
=−2.499999,

γA2+A7→A4+A5
=6.289996, γA8+A5→2A7

=2, γA7→A5
=0, γA1+A5→A3+A7

=0.01.

(18)

A1+ A2              A3 + A4

2242.5017

A3 + A5              A6 + A7

1.2727301

A6 + 2A7              2A2 + 2A5

74520.314

1984537.3

A2 + A7              A4 + A5

90.000045

A8 + A5              2A7

321.99983

71.999592

A7              A5

0.74999834

29.750039

A1              0              A8

27.160431

1.1506088

1.9289784

27.160431

A4              0
27.160431

A1+ A2              A3 + A4

2250.4377

A3 + A5              A6 + A7

1.6361681
Fig. 1. The concentrations (c1, c3 and c7) - time (t) plot with the rate

constants in reaction network (15).

Fig. 2. The phase portrait for the reaction network (15).
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c1
*=0.00554516, c2

*=0.07933311, c3
*=10.969999, c4

*=0.07363654,

c5
*=0.05571419, c6

*=0.02222221, c7
*=0.20333381, c8

*=0.07102164. (19)

Fig. 3 shows the concentration (c8)-time (t) plot with the varia-

tion of rate constant kA2+A7→A4+A5
. As kA2+A7→A4+A5

 equals to 7.5; the sys-

tem goes to a stable steady state though a damped oscillation. It gives

rise to a stable limiting cycle as kA2+A7→A4+A5
 equals to 7.6 and 10 with

an increase of the oscillating cycle time and the amplitude of c8 as

increasing the rate constant kA2+A7→A4+A5
. Fig. 4 displays the bifurca-

tion plot of kA2+A7→A4+A5
 vs. c8. As kA2+A7→A4+A5

≤7.5, the system admits

a stable steady state and the stable state concentration c8 is equal to

0.07102. It is depicted in the enlarged plot at the upper-right corner

of Fig. 4. As 7.6≤kA2+A7→A4+A5
≤255, the amplitude of c8 in the limiting

cycle (indicated by the max. and min. value in Fig. 4) increases with

an increase of the rate constant kA2+A7→A4+A5
. As 255<kA2+A7→A4+A5

≤1917,

the amplitude of c8 in the limiting cycle decreases with an increase

of the rate constant kA2+A7→A4+A5
. As kA2+A7→A4+A5

 is greater than about

1918, the oscillations damp and the stable state concentration c8 has

the same value as kA2+A7→A4+A5
≤7.5.

Consider a family member of network (2). The addition of a pair

of reversible reactions A1+2A5
→
←A6+2A7 to network (2) leads to

a deficiency three network. Thus, r−p−s=17−6−8=3 and three span-

ning-subnetwork vectors can be computed. According to the posi-

tive real eigenvalue condition, a nonlinear system of inequalities

and equations can be constructed. Similarly, a set of solutions to

the nonlinear system can be easily obtained by modifying the vector

γ in Eq. (17) slightly. The parameters in Eq. (20) are a set of solu-

tions, which is only a little different from those in Eq. (17) for the

values of γA3+A5→A6+A7
. Eq. (20) is used to construct a set of rate con-

stants in Eq. (21a) and an unstable steady state c* in Eq. (21b) hav-

ing a positive real eigenvalue (λ=1) with its eigenvector γ∈St.

µ1=−12.99999, µ2=14.99999, µ3=−1, µ4=10.99999,

µ5=13.99999, µ6=44.99998, µ7=5.999995, µ8=−1,

ξ1=1, α1=−14.49999, ξ2=0.02, α2=0, ξ3=0.009, α2=−0.009 (20)

γA1→0=12.54208, γA8→0=−1.928978, γA4→0=−6.999995,

γA1+A2→A3+A4
=−12.47999, γA3+A5→A6+A7

=−1.60791,

γA6+2A7→2A2+2A5
=−2.499999, γA2+A7→A4+A5

=6.289996,

γA8+A5→2A7
=2, γA7→A5

=0, γA1+A5→A3+A7
=0.01, γA1+2A5→A6+2A7

=0.

(21a)

c1
*=0.00554516, c2

*=0.07933311, c3
*=10.86208, c4

*=0.07363654,

c5
*=0.06342206, c6

*=0.01982421, c7
*=0.18534880, c8

*=0.07102164.(21b)

Fig. 5 shows a two-parameter (Flow Rate, kA7→A5
) plane for differ-

ent values of the rate constant kA1+2A5→A6+2A7
 (=538.00568 and 14000)

for network (21a). The area inside the cusp (marked with OSC) stands

for an undamped oscillations region, and outside of the cusp (marked

with SS) denotes a stable steady state region. Fig. 5 shows that, to

maintain the existence of the sustained oscillations under a fixed

rate constant kA1+2A5→A6+2A7
, the smaller the flow rate is, the smaller

the rate constant kA7→A5
 is required and the narrower the range of it

exists. To maintain the existence of the sustained oscillations under

a higher rate constant kA1+2A5→A6+2A7
, it is required to increase the flow

A6 + 2A7              2A2 + 2A5

50067.446

2303435.2

A2 + A7              A4 + A5

62.611960

A8 + A5              2A7

505.44446

48.373866

A7              A5

0.61475304

38.141090

A1+ A5              A3 + A7

32.368340

A1              0              A8

27.160431

1.1506088

1.9289784

27.160431

A4              0
27.160431

A1+ A2              A3 + A4

2250.4377

A3 + A5              A6 + A7

1.4385347

A1+ 2A5              A6 + 2A7              2A2 + 2A5

538.00568

4.4049983

67543.954

1777571.4

A2 + A7              A4 + A5

68.687408

A8 + A5              2A7

444.04363

58.217085

A7              A5

0.67440459

33.505695

A1+ A5              A3 + A7

2.8434523

Fig. 3. The concentration (c8) - time plot for the reaction network
(18) with a different rate constant kA

2
+A7→A

4
+A5

.

Fig. 4. The bifurcation plot (kA2+A7→A4+A5
 vs. c8) for the reaction net-

work (18).
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rate and to decrease the rate constant kA7→A5
. It also shows that the

higher the rate constant kA1+2A5→A6+2A7
 is, the narrower the range of

the sustained oscillations.

The parameters in Eq. (14) satisfy the positive real eigenvalue

condition derived from the deficiency one subnetwork (4). Param-

eters in Eqs. (17) and (20) are the modification of Eq. (14). They

can be extended to be the solutions to the positive real eigenvalue

condition for the parent networks in Eqs. (2) and (21), respectively.

The subnetwork analysis extends directly the capacity of multiple

steady states of a subnetwork to its parent networks without chang-

ing any of the parameters. According to the analysis, the extended

reactions can be represented by a linear combination of the revers-

ible reactions yi
→
←yj in the subnetwork with yi·µ≠yj·µ (The sym-

bol “·” indicates the standard dot product.). Similarly, one can prove

that the above condition also works for the case of the positive real

eigenvalue problems (Although the vector µ has a different defini-

tion in each problem, the system of inequalities and equations for

both problems forms a similar structure.). Thus, applying the same

parameters in Eqs. (17), (14) and (20) without modifying any one

of them, the capacity of admitting an unstable steady state with a

positive real eigenvalue for reaction networks in Eqs. (2), (4) and

(21) can be extended directly to their parent networks. Take net-

work (4) for an example. The parameters in Eq. (14) can be used

to show that its family members displayed in network (22) also have

the capacity to exhibit unstable steady states with positive real eigen-

values. The first eight lines of network (22) are just the deficiency

one subnetwork (4). The parameters a, b, …, e in the last line of

network (22) are any real numbers. A negative parameter means

the reverse of the reaction arrow. The last line of reaction network

(22) describes any of the reactions which can be represented by a

linear combination of the five reactions on the right-hand side of

the equation. These five reactions are reversible in the subnetwork

(4) and have the property of yi·µ≠yj·µ (For the vector µ in Eq. (14),

it leads to µ1≠0, µ8≠0, µ6+2µ7≠2µ2+2µ5, µ8+µ5≠2µ7 and µ7≠µ5.).

The extended reactions derived by the last line of the network (22)

might consist of many irreversible reactions and reversible reaction

pairs. Thus, the network (22) might have high deficiency. In a similar

way, the capacity of admitting an unstable steady state with a posi-

tive real eigenvalue for the networks in Eqs. (2) and (21) can also

be extended to their family networks by the parameters in Eqs. (17)

and (20), respectively.

A1
→
←0→←A8

A4→0

A1+A2→A3+A4

A3+A5→A6+A7 (22)

A6+2A7
→
← 2A2+2A5

A2+A7→A4+A5

A8+A5
→
← 2A7

A7
→
← A5

yi→yj=a(A1→0)+b(A8→0)+c(A6+2A7→2A2+2A5)

yi→yj=+d(A8+A5→2A7)+e(A7→A5)

CONCLUSIONS

A complex bacterial glycolysis model is studied, which consists

of eight nonlinear coupled equations. A minimum subnetwork of

the bacterial glycolysis model is determined to exhibit an unstable

steady state with a positive real eigenvalue, which gives rise to un-

damped oscillations for a small perturbation. The phenomena of

oscillations and bifurcation are discussed. These results are extended

to the bacterial glycolysis model and several parent networks.

The positive real eigenvalue condition is applied in this work,

which provides a necessary and sufficient condition for the deter-

mination of an unstable steady state having a positive real eigen-

value for general reaction networks. The advantage of this analysis

is without knowing the values of rate constants in advance, which

are usually difficult to determine precisely. For a deficiency one

network, the positive real eigenvalue condition constructs a linear

system of inequalities and equations, which can be solved by the

Simplex method. The capacity of admitting an unstable steady state

with a positive real eigenvalue for a subnetwork might be extended

to its parents.

The results of this work might help us to study the complex reac-

tion networks in other biological systems. From a metabolic engi-

neering point of view, it can be also applied to investigate glycoly-

sis in other organisms, such as mammalian cells and yeast, even if

they have different stoichiometry. At the course of the breakdown

of glucose to obtain energy in cells, this work mainly focuses on

glycolysis. An oxidative catabolism system, which couples a glyc-

olysis model, a citric acid cycle and a respiratory chain, is currently

under investigation. It involves not only the ATP generation from

glucose but also the conversion of pyruvate to carbon dioxide and

water. The results of this work serve as a guide to this kind of com-

plex reaction network.

APPENDIX

1. Positive Real Eigenvalue Condition

Consider an N-species reaction network with reaction set R and

stoichiometric subspace St. Suppose the network has rank s and r re-

actions with p reversible reaction pairs. Let the reaction set for an

arbitrary spanning subnetwork be F and let {d
(1)

, d
(2)

, …, d
(r−p−s)

} be

Fig. 5. The locus of the oscillation bifurcation for network (21) in
the two-parameter (Flow Rate, kA7→A5

) plane for different
values of the rate constant kA1+2A5→A6+2A7

 (=538.00568 and
14000).



426 G.-S. Chuang and M.-S. Chiou

May, 2006

a set of corresponding spanning-subnetwork vectors. Then the cor-

responding isothermal mass action differential equations for the given

network have the capacity to admit an unstable steady state having

a positive real eigenvalue with its eigenvector in the stoichiometric

subspace St, if and only if there exist a nonzero vector γ∈St, a vec-

tor µ∈  which is sign compatible with γ, and also numbers ξ1, ξ2,

…, ξr−p−s, α1, α2, …, αr−p−s satisfying the following two conditions:

(i) For all reversible reaction yi
→
←yj∈R with yi→yj∈F,

 and  are

sign compatible with (yj−yi)·µ.

(ii) For all irreversible reactions yi→yj∈R,

 and 

If the answer is yes, the vectors γ, µ and the numbers ξi, αi, i=1,

…, r−p−s are used to construct a set of positive rate constants {ki→j,

i→j∈R} and an unstable steady state c* having a positive real

eigenvalue λ (>0) with its corresponding eigenvector γ∈St. They are:

(A.1)

cL
*=any positive real number if γL=µL=0.

(A.2)

where λ=any positive real number. The variable κi→j is evaluated

by:

For all irreversible reactions i→ j∈R,

(A.3)

For all reversible reactions i→← j∈R with i→j∈F and yi·µ≠yj·µ,

(A.4)

(A.5)

For all reversible reactions i→←j∈R with i→j∈F and yi·µ≠yj·µ,

κi→j>0, κj→i>0 (A.6)

(A.7)
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NOMENCLATURE

A1, A2, …: chemical species

c1, c2, …: molar concentrations for species A1, A2, … [mol/l]

c* : composition vectors at unstable steady states [mol/l]

d
(L)

: a set of spanning-subnetwork vectors in 

F : reaction set in a spanning subnetwork

ki→j : rate constant for reaction i→j [(mol/l)1-reaction order·s−1

ki→0 : flow rate [s−1]

L : (=r−p−s), number of linearly independent solutions to Eq.

(6)

N : number of species in a reaction network

: non-negative orthant of 

p : number of distinct reversible reaction pairs in a network

R : reaction set

: vector space for r-tuples (i→j) of real numbers with reac-

tion i→j in the reaction set R

r : number of distinct reactions in a network

St : stoichiometric subspace for a network

s : number of ranks in a network

t : time [s]

yi, yj : complex vectors

Greek Letters

αi : variables used in the positive real eigenvalue condition

γ : the nonzero real eigenvector

κi→j : variables defined in Eqs. (A.3)-(A.7)

λ : a positive real eigenvalue

µ : variables defined in Eq. (A.1)

ωi→j : the standard basis for vector space 

ξi : variables used in the positive real eigenvalue condition
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ξL yi µ⋅( ) + αL[ ]di j→
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 − γi j→

L=1

r−p−s

∑ ξL yi µ⋅( ) + αL[ ]di j→

L( )
 − γi j→
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∑

ξLdi j→
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0>
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ki j→  = 
λκi j→

cL
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y
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