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Undamped oscillations in bacterial glycolysis models
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Abstract—The exotic dynamical behaviors exhibited in chemical reaction systems, such as multiple steady states,
undamped oscillations, chaos, and so on, often result from unstable steady states. A bacterial glycolysis model is studied,
which involves the generation of adenosine triphosphate (ATP) in a flow system and consists of eight species and ten
reactions. A minimum subnetwork of the bacterial glycolysis model is determined to exhibit an unstable steady state
with a positive real eigenvalue, which gives rise to undamped oscillations for a small perturbation. A set of rate con-
stants and the corresponding unstable steady state are computed by using a positive real eigenvalue condition. The phe-
nomena of oscillations and bifurcation are discussed. These results are extended to the bacterial glycolysis model and

several parent networks.
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INTRODUCTION

Some exotic dynamic phenomena in chemical reactors, such as
unstable steady states, undamped oscillations and multiple steady
states, have been shown to occur under both non-isothermal and
isothermal conditions [Chang et al., 1989; Kim and Rhee, 1989;
Chuang et al., 2004]. There are a growing number of experimental
systems in which abnormal behavior is exhibited in isothermal reac-
tors [Geiseler and Bar-Eli, 1981; Orban and Epstein, 1985; Hung
et al., 1995; Dutt and Miiller, 1996]. This is to say that instabilities
derive not from thermal effects but rather from the intricacy of chem-
istry itself. The identification of such reaction mechanisms is im-
portant, since it not only helps experimentalists to determine reac-
tion mechanisms but also helps engineers to design more efficient
reaction processes.

Some results of the chemical reaction network theory have been
based upon classification of reaction networks by means of a non-
negative integer index called the deficiency. The work of Hom [1972],
Horn and Jackson [1972], and Feinberg [1972] led to the deficiency
zero theorem: for any deficiency zero network, no matter what the
positive rate constants are, there is at most one positive steady state,
that steady state is stable and there does not exist any cyclic solu-
tion. However, the stable property of deficiency zero networks is
not shared in a general way by networks of higher deficiency. The
deficiency one theorem [Feinberg, 1987] and the deficiency one
algorithm [Feinberg, 1988] provide means to distinguish between
those (deficiency one) mechanisms which can exhibit multiple steady
states and those which cannot. Besides these deficiency-oriented
theories, the subnetwork analysis [Li, 1998; Chuang et al., 2004]
and the SCL graph method [Schlosser and Feinberg, 1994] can also
be applied to determine the possibility of multiple steady states. The
stoichiometric network analysis developed by Clarke [1980] is a use-
ful tool to study the stability of complex reaction networks. Based
on stoichiometric network analysis, conditions for the occurrence
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of a Hopf bifurcation in reaction networks are proposed in papers
[Eiswirth et al., 1991, 1996].

Biological cell systems, which usually consist of many species
and reactions, can also give rise to those complex reaction behaviors
[Hatzimanikatis and Bailey, 1997; Li, 1998; Chuang et al., 2004;
Ho et al., 2005]. A rudimentary description of glycolysis, a process
by which a carbon source is digested by a cell, is formulated based
upon pathways pertinent to bacteria by Hatzimanikatis and Bailey
[1997]. Under certain assumptions, the steady states of the glyco-
Iytic system are simplified and described by three coupled non-linear
equations. They showed that the system admitted multiple steady
states for some kinetic parameters. In this work, the complex gly-
colytic system with eight species and ten reactions is determined to
admit unstable steady states with positive real eigenvalues, which
approach undamped oscillations for a small perturbation. A posi-
tive real eigenvalue condition in the appendix is applied, which gives
anecessary and sufficient condition for the determination of an un-
stable steady state having a positive real eigenvalue in general isother-
mal reaction networks. The undamped oscillations in a subnetwork
and several extended networks are also determined and discussed.

THEORY

The example of bacterial glycolysis model, simplified by Hatzi-
manikatis and Bailey [1997], arises from participation of ATP and
adenosine diphosphate (ADP) and from the involvement of phos-
phoenolpyruvate (PEP) in the glycolysis pathway. The overall reac-
tion is Glucose+2ADP—2Pyruvate+2ATP, which contains the fol-
lowing elementary steps:

S+E—G+P
S+T—G+D
G+T—F+D
F+2D22E+2T
E+D—P+T
M+T<2D
DT

M
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(The symbols S and P correspond to extracellular glucose and to
pyruvate; G corresponds to the pool of glucose 6-phosphate and
fructose 6-phosphate; F corresponds to fructose 1,6-diphosphate; E
corresponds to phosphoenolpyruvate; M corresponds to adenosine
mono-phosphate (AMP), D to ADP, and T to ATP, respectively.)

The assumptions used in this work are: 1) the reactants, glucose
and AMP, and the product, pyruvate, continue to diffuse or flow in
and out of a cell, while the other species are all constrained inside a
cell; 2) enzyme activities depend only on the concentrations of their
substrates and the cell is not growing; 3) the reaction system is well
mixed and mass action kinetics is followed. Thus, the glycolysis in
a reaction region inside of a cell including material transportation
terms is represented by a reaction network (2) and its correspond-
ing dynamical ordinary differential equations are listed in Eq. (3).

A202A,

A—0

A+AAA,

AFATATA,

AFAAAA, ()
AF2A2A,+2A,

A A AFA,

AFA2A,

A2A,

(A:S,A-E A;:G AL P AT, Ag E A;: D, Ag M, and 0: zero
complex)

dc,
E =Kou= K 5001 Kyt a04.61€2 = Kot 4,5 4,44,€1C5
dc, 2 22
E =— k/l,+/l:~).4;+.44c 1Ca+ 2k4b+2/1,»2/13+2/1\,c(>c7 - 2k24:+24ﬁ4h+2/170105
=Kty ,04.€2C7
dc;
d_tJ = k/4\+/4:—>,43+,4401c2— k/4;+/45—>/4b+,4.03c5 + kA|+A5—>A3+A-,CICS
dc,
E =—K4,50Cs K it 404,812+ Koty 54,04.62C7 3)
dcs 2 22
d_f =— k/:;+/:\,9.,1b+.,1,0305 + 2k4h+2/1,92/::+2/:\,c(,c7 - 2k24;+24;»4h+2470105
2
F Kt 5 4,04.62€7 = Kigia,524.C5C5 + Ko 404,67
+K454.C7— K 4,65 K ia.54,44,C1Cs
dC(, 2 22
E =Kt a04,€3C5 = Kot 124, 52.4,424,C6€7 + Kot 124,5.4,42.4,€2C5
dc, 2 22
E = k/:;+/:;9.,1b+.,1,0305 - 2k4h+2/1,92/::+2/:\,0607 + 2k24;+24;»4h+2470105
2
- k.4;+.4,»A,+Aiczc7 + 2k/45+/45~>2_4—08c5 - 2k2/47~>/43+/4;c7
=K aCrt K4 CsH Kot 4,04,€1Cs
dCs 2
I = ko—ns - kAg—mCs - kAsmS—»u.,CsCs + kZA-,—>Ag+ASC7

where ¢, i=1, 2, ..., 8 denote the concentrations of species A, A,,
..., A within the reaction region of a cell and k, ., is a rate constant
for reaction i—] in network (2).

The last seven lines in Eq. (2) are the elementary steps in mech-
anism Eq. (1). The first two lines in Eq. (2) display the inflow of
reactants and the outflow of remaining reactants and the products.
In reaction network terms [Glansdorft and Prigogine, 1971], to ac-
count for the inflow of A, and Ay in the feed stream, the pseudo-
reactions 0— A, and 0— A; are added to true chemistry Eq. (1).
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(The physical meaning of “0” (zero complex) represents the sur-
roundings.) Compared with the dynamical equations in Eq. (3), the
rate constants k, ., and k,_, , are assigned, respectively, to be equal
to ¢//0 and ¢{/6 (The symbol ¢/ denotes the feed concentration of
species i(=1, 8) and &denotes the residence time.). Also to account
for the outflow of A,, Ag and A, in the effluent stream, pseudo-reac-
tions A,—0, A;—0 and A,—0 are added to true chemistry Eq.
(1). The flow rates k,,, ., k,, .o and k, ., are all assigned to be equal
to the reciprocal of residence time 1/6. Thus, in reaction network
terms, we consider the reactions given in Eq. (1) operating in an open
system to be modeled by reaction network (2), instead of Eq. (1).

The complex reaction network (2) has deficiency two. Accord-
ing to the deficiency-oriented theories, a network must have a de-
ficiency of at least one to give rise to multiple steady states or an
unstable steady state. Thus, we are interested to know whether there
exists a deficiency one “minimum” subnetwork of the deficiency
two network (2) consisting of the same eight species as the net-
work (2), which admits multiple steady states or an unstable state.
All such deficiency one subnetworks were analyzed by the defi-
ciency one algorithm and none admits steady state multiplicity. A
subnetwork is determined to exhibit an unstable steady state with a
positive real eigenvalue by using a positive real eigenvalue condi-
tion. It is obtained by deleting the reaction A,+A;— A;+A, from
network (2) and displayed below.

A202A,
A,—0

AHATAA,

AFAAAA, ©)
A2A,22A,+2A

AFAAFA,S

AdA2A,

A2A,

The network (4) is used to introduce some terminology used in
the positive real eigenvalue condition (formal definitions can be found
in Feinberg [1987, 1988]). We will use the symbol N to denote the
number of species in a network under consideration. Thus, for net-
work (4) N=8. By R" we shall mean the usual vector space of N-
tuples of real numbers. The standard basis for R" will be denoted
{AL A, .., Ayl

The complexes of a network are the objects that appear before
and after reaction arrows. Thus the set of complexes for network
@) is {0, Ay, Ay Ay AtA, ArtA, ArtA, ActAL, A+2A,, 2A+
2A;, A +AL AA, AgtAs, 2A,, A, As}. Given a network with
N species, we shall associate with each complex a vector in R".
Consider network (4), with complex 0 (zero) we associate the com-
plex vector 0 in R°; with complex A,+2A, we associate the com-
plex vector A;+2A,; and so on.

We shall write y,—y; (or the abbreviation i—j) to indicate the
reaction whereby the complex y; reacts to complex y,. We denote
the set of reactions in a network by the symbol R. Thus the set of
reactions in network (4) is R={0—A,, A,—0, 0—A;, A;—0, A,
—0, AtA,ATA, A;HAATA,, A2A,—2A,12A, 2A+
2A,—A2A,, AHA,—AFA AdtA2A, 2A, > AtAL A, —
As, As— A, }. We reserve the symbol r for the number of distinct
reactions in a network. For network (4), =14. A reaction y,—y; is
said to be reversible if its reverse reaction y,—y; is also in the net-
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work; otherwise, the reaction y,—y; is irreversible. We shall call
reversible reactions y,<2y; a reversible reaction pair. The symbol p
indicates the number of distinct reversible reaction pairs in a net-
work. The number of irreversible reactions in a network is r—2p.
For network (4), there are five (p=5) reversible reaction pairs and
four (r—2p=14—10) irreversible reactions.

With each reaction of the network we associate a reaction vector
in R" obtained by subtracting the “reactant” complex vector y; from
the “product” complex vector y;, i.e., y;~y;. Consider network (4) for
reaction 0— A,; the corresponding reaction vector in R°* is A,—0
(=A.,). The set of reaction vectors for network (4) is {+A,, £A;, —A,,
A3+A4_A|_A27 A6+A7_A3_A55 i(2A2+2A5_A6_ 2A7): A4+A5_
A A7, i(2A7_ As_ As)a :t(As_ A7)} .

We shall say that a reaction network has rank s if there exists a
linearly independent set of s reaction vectors for the network and
there exists no linearly independent set of s+1 reaction vectors. The
set of eight reaction vectors {—A,, —A;, A;+A,—A—A,, A;+A -
A-A;, 2A,H2A-A2A,, AFAA-AL 2A-AA A-AS
for network (4) is linearly independent, but any set of nine reaction
vectors for network (4) is linearly dependent. Thus, the rank of net-
work (4) is eight, and for it we write s=8.

The stoichiometric subspace for a network is the span of its reac-
tion vectors. We shall reserve the symbol S, to designate the stoi-
chiometric subspace for a network. It is clear that a stoichiometric
subspace is a linear subspace of R". The dimension of a stoichio-
metric subspace is equal to the rank s of its network. The stoichio-
metric subspace for network (4) is the span generated by the reac-
tion vectors {—A,, —A;, A;+A—A —A,, A;tA—A,—A,, 2A,+2A—
Ac2A,, A FA— A~ A, 24— Ay Ay, Ai— A} which is R

We shall say that a vector ge R" is sign compatible with (or the
abbreviation s.c.w.) a vector e R" if sign ¢;=sign ¢, L=1, 2, ...,
N. This means that o; is positive if ¢, is positive, o; is negative if
@, is negative, and o; is zero if ¢, is zero.

Suppose a network under consideration has r distinct reactions
with p reversible reaction pairs and r—2p irreversible reactions. A
spanning subnetwork of the network under consideration is a net-
work consisting of all the r—2p irreversible reactions and one and
only one reaction of each p reversible reaction pairs. There are r—p
(=(r—2p)+p) reactions in a spanning subnetwork. We shall reserve
the symbol F to denote the set of reactions in a spanning subnet-
work. The network shown in (5) is a spanning subnetwork of net-
work (4), since it consists of the four irreversible reactions and one
reaction of the reversible reaction pair in network (4). For it we write
F={A,—0, A;—0, A,—0, A+tA, P ATA, ATAAGA,,
A2A,22A,H2A,, A, A, — At A, ActAs—2A,, A,— A}

A0 A,

A—0

A+AAFA,

AFAAFA, 5
AA2A,—2A,42A,

AFA,— AFAS

AgtA2A,

A, A,

A network having one or more than one reversible reaction pairs
(p=1) will contain more than one spanning subnetwork. In what
follows it will be understood that we have chosen to work with a

fixed (but arbitrary) spanning subnetwork in each case under study.
For a chosen spanning subnetwork, we shall construct a set of cor-
responding spanning-subnetwork vectors {d", d”, ..., d"” "} ina
vector space R”. Let {@, .; i—j€R} be the standard basis for R".
These spanning-subnetwork vectors are the r—p—s linearly inde-
pendent (nonzero) solutions to the vector equation

) Z Fdf':)/'(yj -y)=0,
i—>je

(A solution is a family of numbers {d”,: i—jeF}.). Then, d”, 1=
1,2, ..., r—p—s are vectors defined in the following way:

L=1,2,...,r—p-s ©)

d(“: z dfljja)i—ﬁ @)
i>jeF
Consider network (4). For an arbitrary spanning subnetwork, there
is one (r—p—s=14—5-8=1) spanning-subnetwork vector d"’ in R".
Let network (5) be the chosen spanning subnetwork. By Eq. (6),
we have

00— A +d (0 Ag)+dP,0(0- A,)
+ d;l,)mﬁ/u/u(As +A,-A-A))

+d s nen (As+ Ar— A=Ay
+ d.(»1lu)+z.4ﬁz.4l+z4;(2A2 +2A5—A—2A))
+ d;lz)JrA.»A,m;(AL; +A;—A,-A)

+ df12r/1ﬁ2A-(2A7 —As—Aj)+ d;‘-LA;(AS -A;)=0

A set of nonzero linearly independent solutions to the above equa-
tion is:

(1) () O] () (O]
d/u»o =-1 5 d/lx~>0 = 0, d_/14~>0 = 2, dA,+A:~>Ax+A, =1 > d.dwl;»A(,m. =1 >

(1) ) (O] 1)
dAu+2A-,—>2A:+2A5:] ) dA:+A-,—>A4+A(:]7 d/4s+/45—>2/4.:0, dA.—>A<:_2 (8)

Let ¢=[c,, C,, ..., ¢,] be a composition vector in P* (non-negative
orthant of R") for species A,, L=1, 2, .., N. In general, the set of
isothermal mass action differential equations describing the behav-
ior of a reaction network can be written:

d o,

L1000 - 5N = X k([0 )9 ©)
ioje 1=1

where y; and y; denote, respectively, the reactant and product com-

plex, y, denoting the stoichiometric coefficient of species A, in re-

actant complex y,, and k;, ,; denoting the rate constant for reaction

i—]. The mass action differential equations for network (4) are

dc,

— =Ko s, =K, 50C1= Koty 54,04,C1C2

dt

dc, 2 22

dty ==Kt a0 a,C1C+ 2Ky 24, 524,424.C6C7— 2Ko 404, 5.4,424,C5C
- kA:mHAﬁASCz%

dc;

— =Kot 404,C1C Koty o5.4,44,€3C5

dt

dc,

E ==K, 50Cs + Ku i, 54,04,C1C2 + Koo, 4,0.4,C2C7 (10)

ch 2 22

I ==Kt 404,63Cs + 2K 1124, 524,424,C6€7— 2Kau42.4,5.4,424,C2C

2

+ Kt 4,44.60C7 = Kia, 524.C5C5+Kou, 1 404.C7
+kiaC7—Ki54Cs

dcg 2 22

E =Koy oa54,04,C3C5— Ko sna 52.4.424.C6C7 + Kot 124 5.4,424,C2C5
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dc, 2 22
E = k/t,wtﬁAﬁA,CsCs - k4b+24ﬁ241+24;0(,07 + k2/11+2/1;~)/1b+2/170205
2
- kA:+A7»A,+A;C2c7 + 2k/45+/45~>2/l—08c5 - 2k2/47~>/43+/4;c7

=k aCrtkyacs
dcg
dt

2
= ko—ws - kAg—mCs - k/4s+,45—>z,4.,0805 + kZA-,—>Ag+ASC7

By a steady state of a reaction system we shall mean a composi-
tion ¢" satisfying 0=f(c"). By a positive steady state we shall mean
a steady state at which all species concentrations are positive. Only
positive steady states are considered in this article.

For each composition ¢ € P" the right side of differential Eq. (10)
is a linear combination of all reaction vectors in its network. This is
to say that de/dt always lies in the stoichiometric subspace S, of the
network under consideration. Suppose y=c—c¢" is a vector of com-
position change around a positive steady state ¢". Then it leads to
7€ S,. Any vector ye S, of a given network can be represented by
reaction vectors in the reaction set F for an arbitrary chosen span-
ning subnetwork:

=07 7 oo %V]Z_ZF%»,-(y;—yi) (1
RESULTS AND DISCUSSION

A positive real eigenvalue condition provides a necessary and
sufficient condition for the determination of an unstable steady state
having a positive real eigenvalue with its eigenvector lying in the
stoichiometric subspace for the reaction network under study. For a
given reaction network, we choose an arbitrary spanning subnet-
work and construct its spanning-subnetwork vectors. Following the
condition, a system of equations and inequalities is constructed. We
then solve the system. If a set of qualified solutions exists, there is
a set of positive rate constants such that the corresponding isother-
mal mass action differential equations for the given network admit
an unstable steady state with a positive real eigenvalue. Otherwise,
no matter what positive rate constants the system might have, the
differential equations cannot exhibit any positive-real-eigenvalue posi-
tive steady state.

Consider network (4). By the spanning-subnetwork vector in Eq.
(5) and the positive real eigenvalue condition, a set of inequalities
and equations is constructed in Eq. (12):

For reversible reaction A, <20 with A, =0 F,

[Satan](=1)= 70 and [&-0+a)(— 1)~ 74,0 ArE SCW. — 24 (122)

For reversible reaction A;<>0 with A;—0€F,

[S6ta]-0-y, o and [ &0+ ]-0— y, o are s.CW. — 1 (12b)

For reversible reaction A;+2A,222A,+2A5 with A+2A,—2A,+2A,
ek,

(St 240)t Q] = Vaan,2a00, a0 [ G20 20) 0] Y2t 20,001,

are s.C.W. 246+ 26— ti— 244 (12¢)

For reversible reaction Ag+A 22A, with A;+A,—2A,€F,

[& (st 16)+ 10— i, 20, ad [E(2p0) T 4]0~ Yipia o2,

are S.C.W. 24— fk— L (12d)

For reversible reaction A, A, with A,— A€ F,

[ttt ) (=2)= Y, a0d [Spit )= 2)— Yo, ArC S.CW. 15— 117 (12€)

For irreversible reaction A,—0,

E>0 (12f)

[Si(e)+an]= 7,00 (12g)
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For irreversible reaction A, +A,—A;+A,,

$>0 (12h)
[EGuti)tanl= Vasay—a0=0 (12i)
For irreversible reaction A;+A;— A A,

&>0 (12j)
(&Gt i)t anl= Vaearaa,=0 (12k)
For irreversible reaction A,+A;— A, +A;,

$>0 (121
[EGet o)t anl= Vs a0, =0 (12m)

From Eq. (11), the eigenvector y€ S, is represented by

V=LA 20— Vit iea)
AN Yoty ot T2V 02424024 Ve aioa.)
HA Pttt Vst ao,)
HAJE 10t Wt agia T Vit (13a)
HASN Vgt ogia T2V 20,2004 Vit Vagtts—2a, T Vo)
+[A()](%13+AS > At A, Va2, >2A3+2Ag)
HAN Wbttt 2ttt Yttt 2 agstes2a Vi)
AN V0= Vigea24,)

It is required that #is sign compatible with  This implies that

1S SCW. = Yy 0= Vs aid,

1o 18 SCW. = Vot aot T2 V242124~ Vit dyts

HE IS S.CW. Yyt tin,™ Visedosacis

My 1S SCW. = ¥y o Vit tooa, T Vet st (13b)
M isscw. — Vst T2 Vaerrtaagion T Vgt st Vagiassoa, T Vs

Ho 1S SCW. Yyt s ot Vot o4,

1y S SCW. Vagras—aa,— 2%1¢2A~ 224,424 Vagrd, >A4+A5+2%1,3+A5 224, Yty s

He 1S S.CW. = Yy 0~ Vagraa,

The inequalities and Eq.s (12) and (13b) are solved to determine
an unstable steady state with a real positive eigenvalue. According
to Egs. (12) and (13b), we assume the sign pattems of —z4, —t4, 246+
2=, 2= = s, Js— oy fis - - 1. EQS. (12) and (13b) with
the assumed sign patterns form a linear system of inequalities and
equations. Indeed, it is always linear for any reaction network with
r—p—s=1. Mathematically, a linear system of inequalities and equa-
tions can be solved by the Simplex method, even if consisting of
many unknowns. A computer program was developed to solve this
example, for which the number of sign patterns considered is 3"°~1.
Among them only four different sets of solutions are found. A set
of solutions displayed in Eq. (14) is used to do the following anal-
ysis without any particular reason. According to the formula in the
Appendix, Eq. (14) is used to construct a set of rate constants in
Eq. (15), an unstable steady state ¢* in Eq. (16) having a positive
real eigenvalue (A=1) with its eigenvector y< S,. Note the equality
of the flow rate k, ., k,, ., and k, ., in Eq. (15), which is consis-
tent with a CFSTR picture.

=—12.99999, 1,=14.99999, 1= 1, 14,=10.99999),

16=13.99999, 1,=44.99998, 14,=5.999995, 1= 1,

E=1, o;=—14.49999, (14)
Yo =12.58695, 7, ;= 1913043, 7, = 6.999995,
Vaotonon=—1249999 7, . .. =15,

Vit oniyon=—2499999, 7, . .\ =6499996, % .\ 21=2, Y410

21999958 19130433

A—=0—2A
11471573 21.999958

21999958
A, ———0
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A]+A2 22425017 A3+A4

12727301

At AP A A, (15)
74520.314

At2A, 2 2 A, +2A,
19845373

90.000045
A+ A, — A+ A

32199983
Ag+As—=2A,
71999592
074999834

—
7 29.750039 S

¢;=0.00668898, c;=0.06666644, ¢:=10.999999, ¢;=0.09090926,
:=0.07142848, ¢;=0.02222221, ¢;=0.16666714, ¢;=0.08695668. (16)

The reaction network (15) has deficiency one. The deficiency
one algorithm [Feinberg, 1972] is used to show that it cannot admit
multiple steady states no matter what rate constants it might have.
It is interesting to know where this unstable steady state ¢* in Eq.
(16) goes for a small perturbation without approaching any other
steady state. Fig. 1 shows the concentration (c,, ¢; and ¢,)-time (t)
plot with the rate constants in Eq. (15). A sustained oscillation is
obtained and it has a period about 2,200 sec. For network (15), five
different initial conditions (I.C. 1, 2, ..., 5 or points K, L, ..., O)
are numerically simulated and the phase portrait (c, vs. c,) is shown
in Fig. 2. The L.C. 1 is the unstable steady state ¢* in Eq. (16). All
the five initial conditions approach an anticlockwise stable limiting
cycle (R—S—T—R—...), which is marked by the bold curve
in Fig. 2.

Network (15) is a deficiency one subnetwork of network (2). Can
the sustained oscillations of subnetwork (15) be extended to its parent
network (2)? In the study of steady state multiplicity in complex
reaction networks, a parent network often (but not always) also ad-
mits multiple steady states if one of its deficiency one subnetworks
consisting of the same number of species exhibits steady state multi-
plicity. To extend the multiplicity from a subnetwork to a parent
network, sometimes the parameters in the system of inequalities
and equations remain the same without even a change; sometimes

0.06
0.05 -
0.04 -
0.03 - e,
0.02 -
0.01 4
= 0.00 -
=3 T T T
i 0 2000 4000 6000 8000
<20
= 18]
= 18]
2 124 B)c,
< 10
=} 8 4
= 6 -
[5)
2 47
s 2 . : .
S 0 2000 4000 6000 8000
& 06
0.5 -
0.4 -
0.3 - ©c,
0.2 -
0.1
0.0 -
0 2000 4000 6000 8000

t (Time), s

Fig. 1. The concentrations (c,, ¢; and c,) - time (t) plot with the rate
constants in reaction network (15).

07
The path of I.C. 1: K-R-S-T-R...

0.6 4 The path of I.C. 2: L-R-S-T-R...
= The path of I.C. 3: M-P-R-S-T-R...
S The path of I.C. 4: N-Q-R-S-T-R...
E 051 The path of LC. 5: O-R-S-T-R...
= 04
o
=}
2 034 P
£ T
g 02
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Fig. 2. The phase portrait for the reaction network (15).

only a little change is required. For the cases of parameters without
a change, the subnetwork analysis [Li, 1998] provides some suffi-
cient conditions for the capacity of multiple steady states in a net-
work of deficiency greater than one if one of its subnetworks admits
steady state multiplicity. One example [Chuang et al., 2004] is shown
for the case that a little bit of change for the parameters is required.
With a similar concept, we think the parameters in Eq. (14) for the
subnetwork (15) can be used to study sustained oscillations for its
parent network (2).

Consider the network (2) of deficiency two, r—p—s=15-5-8=2;
we have two spanning-subnetwork vectors d"”, d” and the system
of inequalities and equations constructed by the positive real eigen-
value condition becomes nonlinear, for which the Simplex method
cannot be applied. Based on the vector £ and yin Eq. (14), we ad-
Jjust some of these parameters to satisfy the positive real eigenvalue
condition for the network (2). The modified vectors x and y are shown
in Eq. (17), which are used to construct a set of rate constants in
Eq. (18), an unstable steady state ¢* in Eq. (19) having a positive
real eigenvalue (A=1) with its eigenvector y<S,. Comparing Eq. (14)
with Eq. (17), the vector g remains unchanged and only the values
Of 74,00 Yagr00 Yoy rge, A0A Yipg o0, @re tuned slightly. It im-
plies that the solution Eq. (14) for the linear system of inequalities
and equations derived from the positive real eigenvalue condition
of the deficiency one subnetwork (15) can be extended to be a set
of solution for that of the deficiency two parent network (18) with
only a slight modification.

14==12.99999, 15=14.99999, 15=—1, 14=10.99999,
16=13.99999, 14,=44.99998, 1£=5.999995, 1s=—1,
&=1, =—14.49999, £=0.02, o,=0, 17)
Vi,—0=12.54208, 3, .= 1.928978, 7, ;== 6.999995,
Vieagaga, = 1247999, ¥y s non == 1.5, Wpsaa, 24,004, =— 2499999,
Yayia, >A,+A5:6'289996’ Yagra, >2A7:2’ Y, >A5:0’ Vi >A-,+A7:0'01'

27.160431 19289784

Al——=0—=A;

11506088 27.160431

27.160431
A, ———0

22504377

A+A,— A+ A,

1.6361681

A+ A ——— A+ A, (18)
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50067.446
Apt+2A; e DA, + 2A
2303435.2

62.611960

A+ A, 20 AL AL
505.44446
A+ As =24,
48.373866
0.61475304
TS 5
38.141090

32368340

A+A;— A+ A,

¢;=0.00554516, ¢;=0.07933311, ¢;=10.969999, ¢;=0.07363654,
:=0.05571419, ¢;=0.02222221, ¢;=0.20333381, ¢;=0.07102164. (19)

Fig. 3 shows the concentration (c;)-time (t) plot with the varia-
tion of rate constant K, , s, 4, AS Ky .4, 4,4, €quals to 7.5; the sys-
tem goes to a stable steady state though a damped oscillation. It gives
rise to a stable limiting cycle as k, ., ..., equals to 7.6 and 10 with
an increase of the oscillating cycle time and the amplitude of ¢, as
increasing the rate constant k. , .. .. Fig. 4 displays the bifurca-
tion plot of K, 4 4.4 VS. Co. AS K, 4.4 <7.5, the system admits

0.073
A) k =75
0.072 —( ) Ayrd; A4,
0.071 ﬁﬂpfvv
0.070
= 0.069 ; ; - ; : : :
g 0 200 400 600 800 1000 1200 1400
::3 0.074
B) k =7.6
) 0.073 1(B) At A=A A
5 0.072
£ 00711
S 0.070
Q
2 0.069 . . T . . ‘ T
3 0 200 400 600 800 1000 1200 1400
= 0080
S 0078 4(c) kAz+A79A4+AS =10
0.076
0.074
0.072
0.070
0.068 T T T T T T T
0 200 400 600 800 1000 1200 1400

t (Time), s

Fig. 3. The concentration (cs) - time plot for the reaction network
(18) with a different rate constant k., ...

0.25
| —®— Max.of ¢, —O0— Min.of ¢, —-— Stable Steady State
0.10
0.20 0.09 —
0.08 —
0.07 ——
0.15 0.06

0 10 20 30

0.05 4

¢, (Concentration of 4,), mol/l

0.00 T T T T
0 500 1000 1500 2000 2500

ke g, — 4+ 4, » (MOVD)'s”

Fig. 4. The bifurcation plot (K, 4,4, Vs. ) for the reaction net-
work (18).
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a stable steady state and the stable state concentration ¢, is equal to
0.07102. It is depicted in the enlarged plot at the upper-right corner
of Fig. 4. As 7.65K, .4, 4,.4,<255, the amplitude of ¢, in the limiting
cycle (indicated by the max. and min. value in Fig. 4) increases with
an increase of the rate constant K, . s, ... AS 255<K, . 4,44 <1917,
the amplitude of ¢, in the limiting cycle decreases with an increase
of the rate constant K, , ;... 4 AS K4, .44, 15 greater than about
1918, the oscillations damp and the stable state concentration c; has
the same value as k., .., <7.5.

Consider a family member of network (2). The addition of a pair
of reversible reactions A, +2A;e2 As+2A, to network (2) leads to
a deficiency three network. Thus, r—p—s=17—6—8=3 and three span-
ning-subnetwork vectors can be computed. According to the posi-
tive real eigenvalue condition, a nonlinear system of inequalities
and equations can be constructed. Similarly, a set of solutions to
the nonlinear system can be easily obtained by modifying the vector
yin Eq. (17) slightly. The parameters in Eq. (20) are a set of solu-
tions, which is only a little different from those in Eq. (17) for the
values of 7, .4 4.4 EQ. (20) is used to construct a set of rate con-
stants in Eq. (21a) and an unstable steady state ¢* in Eq. (21b) hav-
ing a positive real eigenvalue (A=1) with its eigenvector yeS,.

14=—12.99999, 16=14.99999, 15=—1, 14,=10.99999,

1=13.99999, 14,=44.99998, 1£=5.999995, 16s=1,

&=1, =—14.49999, £=0.02, &,=0, £=0.009, o,=—0.009 (20)
Vi, —0=12.54208, 7, .= 1.928978, 7, .,=—6.999995,

Vi, = 1247999, ¥t aa, = 1.60791,

Vieaaraagan=— 2499999, ¥ 4 4,:4,=6.289996,

Vigras—24,=25 Yoy, =05 Vagray =001, %424 4,024=0-

27.160431 19289784
— (0—
! 1506088 27160431 8

27.160431
A,——0

22504377
A+A,—A;+A,

14385347

Ayt Ay A LA, Qla)

538.00568 67543.954
At 2As = A+ 2A, 2 2 A, + 2A
4.4049983 17775714 -

68.687408

A+ A, —— A+ A
444.04363
A+ As—=—=2A,
58217085
0.67440459
YA rrenvprvan g 5]
33.505695
A1+ A5 2.8434523 A3 + A7
¢;=0.00554516, c:=0.07933311, c:=10.86208, c;=0.07363654,

¢:=0.06342206, c;=0.01982421, ¢;=0.18534880, c;=0.07102164.(21b)

Fig. 5 shows a two-parameter (Flow Rate, k, . ) plane for differ-
ent values of the rate constant K, ,» . ..., (=538.00568 and 14000)
for network (21a). The area inside the cusp (marked with OSC) stands
for an undamped oscillations region, and outside of the cusp (marked
with SS) denotes a stable steady state region. Fig. 5 shows that, to
maintain the existence of the sustained oscillations under a fixed
rate constant K, .o, ...+, the smaller the flow rate is, the smaller
the rate constant k, ., is required and the narrower the range of it
exists. To maintain the existence of the sustained oscillations under
a higher rate constant K, ., .24, it is required to increase the flow
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kg +24,—=a+24,= 538.00568

;m
Iy
&
14000_
_.—~0SC
0 .................
SS
0 5 10 1|5 2|0 2‘5

Flow Rate, s

Fig. 5. The locus of the oscillation bifurcation for network (21) in
the two-parameter (Flow Rate, k, ., ) plane for different
values of the rate constant Kk, ,,, .4, (=538.00568 and
14000).

rate and to decrease the rate constant k, ... It also shows that the
higher the rate constant K, . .,..24, 1S, the narrower the range of
the sustained oscillations.

The parameters in Eq. (14) satisfy the positive real eigenvalue
condition derived from the deficiency one subnetwork (4). Param-
eters in Eqs. (17) and (20) are the modification of Eq. (14). They
can be extended to be the solutions to the positive real eigenvalue
condition for the parent networks in Egs. (2) and (21), respectively.
The subnetwork analysis extends directly the capacity of multiple
steady states of a subnetwork to its parent networks without chang-
ing any of the parameters. According to the analysis, the extended
reactions can be represented by a linear combination of the revers-
ible reactions y, <>y, in the subnetwork with y;: u#y; £ (The sym-
bol “*” indicates the standard dot product.). Similarly, one can prove
that the above condition also works for the case of the positive real
eigenvalue problems (Although the vector x4 has a different defini-
tion in each problem, the system of inequalities and equations for
both problems forms a similar structure.). Thus, applying the same
parameters in Egs. (17), (14) and (20) without modifying any one
of them, the capacity of admitting an unstable steady state with a
positive real eigenvalue for reaction networks in Egs. (2), (4) and
(21) can be extended directly to their parent networks. Take net-
work (4) for an example. The parameters in Eq. (14) can be used
to show that its family members displayed in network (22) also have
the capacity to exhibit unstable steady states with positive real eigen-
values. The first eight lines of network (22) are just the deficiency
one subnetwork (4). The parameters a, b, ..., € in the last line of
network (22) are any real numbers. A negative parameter means
the reverse of the reaction arrow. The last line of reaction network
(22) describes any of the reactions which can be represented by a
linear combination of the five reactions on the right-hand side of
the equation. These five reactions are reversible in the subnetwork
(4) and have the property of y, sy, g (For the vector gin Eq. (14),
it leads to 14#0, 1670, 1 t2067% 206218, 1 t16# 24 and go# 44.).
The extended reactions derived by the last line of the network (22)
might consist of many irreversible reactions and reversible reaction

pairs. Thus, the network (22) might have high deficiency. In a similar
way, the capacity of admitting an unstable steady state with a posi-
tive real eigenvalue for the networks in Egs. (2) and (21) can also
be extended to their family networks by the parameters in Egs. (17)
and (20), respectively.

A202 A,
A,—0
A+A,—AFA,
AtATAGTA, @2
At2A, < 2A,+2A,
AtA At A;
AgtA 2 2A,
A2 A
Y2 YraA > 0) (A 0)te(AT2A, > 2A,+2A5)
TA(AgT AT 2A)Te(A; > Ay)

CONCLUSIONS

A complex bacterial glycolysis model is studied, which consists
of eight nonlinear coupled equations. A minimum subnetwork of
the bacterial glycolysis model is determined to exhibit an unstable
steady state with a positive real eigenvalue, which gives rise to un-
damped oscillations for a small perturbation. The phenomena of
oscillations and bifurcation are discussed. These results are extended
to the bacterial glycolysis model and several parent networks.

The positive real eigenvalue condition is applied in this work,
which provides a necessary and sufficient condition for the deter-
mination of an unstable steady state having a positive real eigen-
value for general reaction networks. The advantage of this analysis
is without knowing the values of rate constants in advance, which
are usually difficult to determine precisely. For a deficiency one
network, the positive real eigenvalue condition constructs a linear
system of inequalities and equations, which can be solved by the
Simplex method. The capacity of admitting an unstable steady state
with a positive real eigenvalue for a subnetwork might be extended
to its parents.

The results of this work might help us to study the complex reac-
tion networks in other biological systems. From a metabolic engi-
neering point of view, it can be also applied to investigate glycoly-
sis in other organisms, such as mammalian cells and yeast, even if
they have different stoichiometry. At the course of the breakdown
of glucose to obtain energy in cells, this work mainly focuses on
glycolysis. An oxidative catabolism system, which couples a glyc-
olysis model, a citric acid cycle and a respiratory chain, is currently
under investigation. It involves not only the ATP generation from
glucose but also the conversion of pyruvate to carbon dioxide and
water. The results of this work serve as a guide to this kind of com-
plex reaction network.

APPENDIX

1. Positive Real Eigenvalue Condition

Consider an N-species reaction network with reaction set R and
stoichiometric subspace S,. Suppose the network has rank s and r re-
actions with p reversible reaction pairs. Let the reaction set for an
arbitrary spanning subnetwork be F and let {d”, d?, ..., d"”™} be

Korean J. Chem. Eng.(Vol. 23, No. 3)
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a set of corresponding spanning-subnetwork vectors. Then the cor-
responding isothermal mass action differential equations for the given
network have the capacity to admit an unstable steady state having
a positive real eigenvalue with its eigenvector in the stoichiometric
subspace S,, if and only if there exist a nonzero vector y< S, a vec-
tor e R" which is sign compatible with y, and also numbers &, &,

W& O, O, ..., o, satisfying the following two conditions:

(i) For all reversible reaction y,/<2y,€ R with y,—y,eF,
rp-s rp-s

z [‘fl(yr ,U)+a,]d,%, }/*)j and z [‘fl(yr :u)+al]dl%/ }/ﬁj are
sign compatlble with (y~y,)

(ii) For all irreversible reactions y,—y,€ R,
T, d & o)
LZ:; &udisy;>0 any LZ:; [&(yi- )+ au]dis;— 7:5,=0.

If the answer is yes, the vectors % u and the numbers &, ¢, i=1,
., T—-p—s are used to construct a set of positive rate constants {k; .,
i—je R} and an unstable steady state ¢* having a positive real
eigenvalue A (>0) with its corresponding eigenvector y<S,. They are:

*nwcu=l=[ﬂ,m,ﬁ}, (A1)

c;=any positive real number if y;=2£4,=0.

K Ak,

i—>j

H(C,)} iL.

Vy,—y;€R, (A2)

where A=any positive real number. The variable
by:

K, is evaluated

For all irreversible reactions i— je R,
r-p-s

Kisj= Z &d 52/ (A3)

For all reversible reactions i< jeR with i—j€F and y, gy, 44,

r—p-s

—p—:
Z él(yl ﬂ)+al:|dl*>j 71~>/

I=

A4
¥~y u i

mm w+ald’ -7,
Kisy= (A5)
=y)-u

1 M\

For all reversible reactions i<>jeR with i—j €F and y; 12y, 4,

K >0, k>0 (A6)

r—p-s

—p—:
Kioy= K= X £d1, (A7)

L=1
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NOMENCLATURE

A,, A,, ...: chemical species

May, 2006

¢, C,, ...: molar concentrations for species A,, A,, ... [mol//]

¢ :composition vectors at unstable steady states [mol//]

d"”  :aset of spanning-subnetwork vectors in R"

: reaction set in a spanning subnetwork

: rate constant for reaction i—>j [(mol/f) " % -g

: flow rate [s7']

: (=r—p—s), number of linearly independent solutions to Eq.
(©)

: number of species in a reaction network

: non-negative orthant of R"

: number of distinct reversible reaction pairs in a network

: reaction set

: vector space for r-tuples (i—j) of real numbers with reac-
tion i—j in the reaction set R

r : number of distinct reactions in a network

S,  :stoichiometric subspace for a network

S

t

-1

cC~ s
(=]

=

m'T gz

D
p-~t
B

: number of ranks in a network
s time [s]
Y., y; : complex vectors

Greek Letters

: variables used in the positive real eigenvalue condition
: the nonzero real eigenvector

: variables defined in Egs. (A.3)-(A.7)

: a positive real eigenvalue

: variables defined in Eq. (A.1)

: the standard basis for vector space R”

: variables used in the positive real eigenvalue condition

<
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